1.真空泵 2.气水分离器 3.冷却器
液环的温度对泵的气量影响很大,真空度越高时这种影响也越明显,水温升高,气量下降,定量的变化可以用下列公式进行计算:
Qt=Q15*(P1-Pt)/(P1-P15) (1)
其中:
Qt—水温为t℃时的气量(m3/min)
Q15--水温为15℃时的气量(m3/min)
P1—水环泵吸入压力(mmHg)
Pt—水温为t℃时的饱和蒸汽压(mmHg)
P15--水温为15℃时的饱和蒸汽压(mmHg)
由此可见,水环泵的液环温度对真空泵的真空度、气量均有影响,所以降低水环泵的液环温度是非常必要的。
5、用不同的工作液来提高真空泵的性能
水和油的汽化压力,在相同的温度下,差别较大。我们分别用水和油作为水环泵的液环,泵的口径分别为50、80mm,从图5可以看出,在300mmHg的压力以上的点水作为真空泵的液环和油作为真空泵的液环基本上具有相同的抽气量,但是在低于300mmHg以下的压力点,我们看到油环的吸入气量要大于水环,并且压力越低越明显。并且水环的极限真空压力是20mmHg,而油环的极限真空压力为4mmHg左右,相差较大。
从上图可以很明显看出,液环的饱和蒸汽压对提高液环泵极限真空度关系密切。
图5 真空泵气量与压力关系性能曲线
6、从不同的位置补液提高真空泵的性能
看图1,在真空泵腔内,①~⑤为泵体内的低压腔区域,而⑦~11为高压腔区域,假如补液口位置在低压区,那么外界的供液可以通过泵本身的自吸方式实现补液,对补液压力要求较低。如果在高压腔补液,那么补液压力须大于泵腔内的压力才能进行泵腔内的补液,否则工作液得不到及时补充,就会造成气体从压缩腔回流到吸入腔,影响真空泵的性能。经过多次验证发现,利用泵自吸的方式进行补液,对泵的性能有降低作用,因为泵在吸入腔处进行补给液或从叶轮端面进行补液,工作液已经开始工作了一段时间(从工作液压缩气体完成时为起点),也就是能量有了一定的损失,再加上这时补液会对液环产生冲击损失,也减少了工作液对气体的有效做功,消耗了一部分能量。如果把补液放在图1的11气室位置,补给液获得了充分的能量,并在几乎没有能量损失的情况下参与下一轮的吸、排气过程,所以在高压腔 位置补液对提高真空泵性能是有好处的。
但是并不是补液的压力越高越好,经过验证压力一般在1~1.5bar的压力是较合理的,否则压力太高,补充的液体过多,使得液体占据了抽吸气体的空间,真空泵的抽气量和排气压力都会降低,同时泵输送的液体量增加,所以轴功率会增大,泵效率降低,同时有振动和噪声产生,并周期性地从泵的排气口排出大量的水。
7、合理的补充工作液且提高真空泵性能
工作液的补给量在什么情况下最为合理,让真空泵处于一种最佳的运行状态,可以通过计算的方式来确定补给液的量。
有人常常认为,只有动力损失部分才转换为热,对干输送气体的泵则不然,它是把轴功率全部转化为热。
通过计算,可以很清楚地对真空进行补液,这种合理的补液,可以充分发挥液环的作用,把真空泵压缩气体产生的热及时排出泵腔外,保证真空泵液环的温度不会大幅升高,对液环泵的叶轮和泵体间的间隙进行有效的密封,提高真空泵的容积效率,及时补充随气体排出泵腔外的工作液,润滑轴封等作用,同时提高真空泵的运行可靠性、平稳性和效率。
8、特殊的气液分离装置提高溶解性气体的利用率
液环泵的突出优点就是可以输送有毒、有害、易燃和易爆的气体,不会对环境和人造成伤害,另一突出优点是液环泵的压缩过程可以认为是等温压缩的,这样对干易燃、易爆气体的压缩不会发生燃烧和爆炸的危险.但是如果抽送的气体溶解于液环中,那么液环泵的抽气量会发生变化,越容易溶解在液环中的气体,气体体积变化越大,抽送的气体量越少,所以针对这种情况,为了尽可能回收溶干液环中的气体,气液分离器可设置为如图6所示的结构。从图中可以看出,从真空泵排出的气体首先进入一级气水分离器,并且被排出的气体从这个分离器中排出,饱含溶解气体的工作液被输送到下一级低压气水分离器,由于压力的降低,溶解在液体中的气体被释放出来,被释放的气体输送到泵的进口,参与循环。由于工作液的循环使用,从下一级分离器分离出来的液体压力变得很低,需要用泵增压再对真空泵进行补液。
图6 对溶解性气体的特殊分离
1.真空泵 2.气水分离器 3.低压气水分离器 4.泵 5.冷却器
结语
从上述的有关真空泵的叙述中可以看出,真空泵的性能改善措施有多种,仅列举了应用过程中的几种较为典型的几种方法,关于设计方面有关改善和提高真空泵性能的方法,如关于泵体与叶轮端面的间隙对真空泵性能的影响,转速的变化对真空泵性能的改变等等,在应用中的具体情况可以加以区别利用,这对提高真空泵的性能,提高真空泵运行的平稳性和可靠性会起到一个积极的作用。